An Adaptive Markov Chain Monte Carlo Method for GARCH Model
نویسنده
چکیده
We propose a method to construct a proposal density for the Metropolis-Hastings algorithm in Markov Chain Monte Carlo (MCMC) simulations of the GARCH model. The proposal density is constructed adaptively by using the data sampled by the MCMC method itself. It turns out that autocorrelations between the data generated with our adaptive proposal density are greatly reduced. Thus it is concluded that the adaptive construction method is very efficient and works well for the MCMC simulations of the GARCH model.
منابع مشابه
Markov Chain Monte Carlo on Asymmetric GARCH Model Using the Adaptive Construction Scheme
We perform Markov chain Monte Carlo simulations for a Bayesian inference of the GJR-GARCH model which is one of asymmetric GARCH models. The adaptive construction scheme is used for the construction of the proposal density in the Metropolis-Hastings algorithm and the parameters of the proposal density are determined adaptively by using the data sampled by the Markov chain Monte Carlo simulation...
متن کاملBayesian estimation of GARCH model with an adaptive proposal density
A Bayesian estimation of a GARCH model is performed for US Dollar/Japanese Yen exchange rate by the Metropolis-Hastings algorithm with a proposal density given by the adaptive construction scheme. In the adaptive construction scheme the proposal density is assumed to take a form of a multivariate Student’s t-distribution and its parameters are evaluated by using the sampled data and updated ada...
متن کاملKernel Estimators of Asymptotic Variance for Adaptive Markov Chain Monte Carlo
We study the asymptotic behavior of kernel estimators of asymptotic variances (or long-run variances) for a class of adaptive Markov chains. The convergence is studied both in L and almost surely. The results apply to Markov chains as well and improve on the existing literature by imposing weaker conditions. We illustrate the results with applications to the GARCH(1, 1) Markov model and to an a...
متن کاملBayesian Estimation of GARCH Model by Hybrid Monte Carlo
The hybrid Monte Carlo (HMC) algorithm is used for Bayesian analysis of the generalized autoregressive conditional heteroscedasticity (GARCH) model. The HMC algorithm is one of Markov chain Monte Carlo (MCMC) algorithms and it updates all parameters at once. We demonstrate that how the HMC reproduces the GARCH parameters correctly. The algorithm is rather general and it can be applied to other ...
متن کاملBayesian Adaptive Hamiltonian Monte Carlo with an Application to High-Dimensional BEKK GARCH Models
Hamiltonian Monte Carlo (HMC) is a recent statistical procedure to sample from complex distributions. Distant proposal draws are taken in a sequence of steps following the Hamiltonian dynamics of the underlying parameter space, often yielding superior mixing properties of the resulting Markov chain. However, its performance can deteriorate sharply with the degree of irregularity of the underlyi...
متن کامل